Price-Related Bias (PRB)#
- assesspy.prb(estimate: list[int] | list[float] | Series, sale_price: list[int] | list[float] | Series) → float#
PRB is an index of vertical equity that quantifies the relationship between ratios and estimated values as a percentage. In concrete terms, a PRB of 0.02 indicates that, on average, ratios increase by 2% whenever the estimated values increase by 100 percent.
PRB is centered around 0 and has a generally accepted value of between -0.05 and 0.05, as defined in the IAAO Standard on Ratio Studies Section 9.2.7. Higher PRB values indicate progressivity in assessment, while negative values indicate regressivity.
- Parameters:
estimate (Array-like numeric values) – A list or
pd.Series
of estimated values. Must be the same length assale_price
.sale_price (Array-like numeric values) – A list or
pd.Series
of sale prices. Must be the same length asestimate
.
- Returns:
A single float value containing the PRB of the inputs.
- Return type:
float
- Example:
# Calculate PRB: import assesspy as ap ap.prb(ap.ccao_sample().estimate, ap.ccao_sample().sale_price)
- assesspy.prb_ci(estimate: list[int] | list[float] | Series, sale_price: list[int] | list[float] | Series, nboot: int = 1000, alpha: float = 0.05) → tuple[float, float]#
Calculate the closed-form confidence interval for PRB. Unlike COD and PRB, this does not use bootstrapping.
- See also:
- assesspy.prb_met(x: float) → bool#
Check whether PRB meets IAAO standards (between -0.05 and 0.05, inclusive).
- Parameters:
x (float) – A single float value containing the PRB.
- Returns:
A boolean value indicating whether the PRB meets IAAO standards.
- Return type:
bool