Kakwani Index#
- assesspy.ki(estimate: list[int] | list[float] | Series, sale_price: list[int] | list[float] | Series) float #
The Kakwani Index (KI) is a Gini-based measure to test for vertical equity in assessment. It first orders properties by sale price (ascending), then calculates the Gini coefficient for sale values and estimated values (while remaining ordered by sale price). The Kakwani Index is the difference between the coefficients: $Gini of Estimated Values - Gini of Sale Prices$.
For the Kakwani Index:
KI < 0 is regressive KI = 0 is vertical equity KI > 0 is progressive
- Parameters:
estimate (Array-like numeric values) – A list or
pd.Series
of estimated values. Must be the same length assale_price
.sale_price (Array-like numeric values) – A list or
pd.Series
of sale prices. Must be the same length asestimate
.
- Returns:
A single float value containing the PRB of the inputs.
- Return type:
float
- Example:
# Calculate KI: import assesspy as ap ap.ki(ap.ccao_sample().estimate, ap.ccao_sample().sale_price)